Air-Water Systems

Chilled Ceilings and Beams

Early 1980’s

- Buildings well insulated for heating
- Advent of personal computers
- Need to remove heat from space
- Limited space available

1980 1990 2005

Chilled Ceilings

Principle of Operation

Chilled Ceiling Panels

CWS = 59 to 62°F
CWR = 62 to 66°F

45% Radiant
55% Convective

Radiant Effect on Occupants

Chilled Ceiling Panels

Dry Bulb Temp. 77°F
Effective Radiant Temp. 74.5°F
Cooling Capacity Comparison

- **Flow Cross Section Ratio**: 1:327
- **18" x 18" Air Duct**
- **1" diameter Water Pipe**

Chilled Ceiling Systems

- Improved thermal comfort
- Minimal space requirements
- Low energy cooling solution

- **Limited Cooling Capacity**
 - 25 BTUH/FT² of active panel
 - 18 BTUH/FT² of floor area (based on 70% active ceiling)

Chilled Ceilings and Beams *Early 1990's*

- **Chilled Ceilings**
 - 1980
 - 1990
 - 2000
 - 2005
- **Passive Beams**
 - Ceiling manufacturers begin to sell high free area perforation panels competitively
 - Convective coils replace ceiling panels

Passive Chilled Beams

- Increased equipment loads
- Greater occupant densities
- Inadequate perimeter cooling
Concrete soffit

Passive Chilled Beams

Air Distribution Pattern

Recessed Beams

Exposed Beams

Support Rods

W

W x 2
Passive Beam Installations

Exposed Passive Beam

Heat Transfer Coil
Support Rods
Cabinet

Chilled Ceilings and Beams
Mid 1990’s

Greater occupant densities
Gypsum board tiles become common
Combine cooling and ventilation
Active Chilled Beams

- Sensible loads up to 100 BTU/FT²
- Primary air delivered at conventional (50 to 55°F) temperatures at or near minimum ventilation flow rate
- Can be used with fiberglass ceiling tiles or without any ceiling

Active Beam Installation
Typical Output

<table>
<thead>
<tr>
<th>Device Capacity</th>
<th>Chilled Ceiling</th>
<th>Cooling Effect (BTU/FT²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 BTU/FT²</td>
<td>Passive Beam</td>
<td>18 BTU/FT²</td>
</tr>
<tr>
<td>400 BTU/LF</td>
<td>Active Beam</td>
<td>40 BTU/FT²</td>
</tr>
<tr>
<td>800 BTU/LF</td>
<td></td>
<td>100 BTU/FT²</td>
</tr>
</tbody>
</table>

Comparative Energy Costs

![Bar chart showing typical annual HVAC energy cost comparison between different systems.]

- **Legend**:
 - Cost to transport air
 - Cost to cool air
 - Cost to transport water
 - Cost to chill water

Passive Chilled Beams

For UFAD Applications

![Bar chart showing device capacity and cooling effect for passive chilled beams.]

UFAD Perimeter Treatment

Decoupled Sensible Cooling System

![Diagram illustrating UFAD perimeter treatment with passive chilled beams and floor diffusers.]

![Timeline chart showing the evolution of chilled ceilings and passive beams from 1980 to 2005.]

![Diagram showing UFAD with passive chilled beam and floor diffusers.]

6
Supply Airflow Requirements

Fan Terminals vs. Chilled Beams

For a floor plate that is 60% interior space

Fan Powered Perimeter Solution:
- Interior: 0.6 CFM/ft²
- Perimeter (design): 3.0 CFM/ft²
- Perimeter Diversity: 70%
- Overall: 1.2 CFM/ft²

Chilled Beam Perimeter Solution:
- Interior: 0.6 CFM/ft²
- Perimeter: 0.6 CFM/ft²
- Overall: 0.6 CFM/ft²

50% reduction in supply airflow

Active Chilled Beams

For Laboratory HVAC Applications

- 1990
- 2000
- 2005

- Chilled Ceilings
- Passive Beams
- Active Beams

Case Study

Laboratory Design for Pharmaceutical Company

- Location: St. Louis, MO
- Outdoor Design Conditions: 94DB/75WB
- Laboratory Space: 54,000 FT²
- Minimum Ventilation Rate: 8 ACH¹
- Space Sensible Heat Gain: 72 BTUH/FT²

Laboratory Design Issues

- Space sensible heat gains of 60 to 75 BTUH/FT²
- Ventilation requirements of 6 to 8 ACH¹
- Laboratories where chemicals and gases are present require 100% OA
- All air systems require 16 to 20 ACH¹ to satisfy sensible load
- Active beams remove over 60% of sensible heat via chilled water circuit
- Require only 40% the primary airflow rate (6-8 ACH¹) of all-air system
Equipment Requirements

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Conventional VAV</th>
<th>Active Chilled Beam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Handling Units</td>
<td>180,000 CFM</td>
<td>72,000 CFM</td>
</tr>
<tr>
<td>Cooling</td>
<td>1,477 Tons</td>
<td>587 Tons</td>
</tr>
<tr>
<td>Heating</td>
<td>21,617 lbs/hr</td>
<td>8,588 lbs/hr</td>
</tr>
<tr>
<td>Duct Distribution</td>
<td>285,493 lbs.</td>
<td>214,120 lbs.</td>
</tr>
<tr>
<td>Control Points</td>
<td>800</td>
<td>800</td>
</tr>
<tr>
<td>Chilled Beams</td>
<td>1,056</td>
<td></td>
</tr>
<tr>
<td>Piping Distribution</td>
<td>4,200 LF</td>
<td></td>
</tr>
<tr>
<td>Sensible Cooling Chiller System</td>
<td>200 Tons</td>
<td></td>
</tr>
</tbody>
</table>

Energy Comparisons

Active Chilled Beam (Parallel Sensible Cooling)

- Reduced fan power – 32 % from Base VAV
- Reduced cooling energy – 46 % from Base VAV
- Reduced ductwork sizes – 18-20 ACPH to 6-8 ACH⁻¹
- Higher Pumping energy – 15% - Offset by other savings
- Higher cooling system efficiencies

Overall 35% Reduction in Energy Costs

Displacement Beams

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Conventional VAV</th>
<th>Active Chilled Beam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Handling Units</td>
<td>$2,264,335</td>
<td>$899,610</td>
</tr>
<tr>
<td>Cooling</td>
<td>$1,627,799</td>
<td>$646,717</td>
</tr>
<tr>
<td>Heating</td>
<td>$244,267</td>
<td>$97,046</td>
</tr>
<tr>
<td>Duct Distribution</td>
<td>$1,481,709</td>
<td>$1,111,282</td>
</tr>
<tr>
<td>Control Points</td>
<td>$1,200,000</td>
<td>$1,140,000</td>
</tr>
<tr>
<td>Chilled Beams</td>
<td>$1,652,984</td>
<td></td>
</tr>
<tr>
<td>Piping Distribution</td>
<td>$266,444</td>
<td></td>
</tr>
<tr>
<td>Sensible Cooling Chiller System</td>
<td>$265,373</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>$6,818,109</td>
<td>$6,079,456</td>
</tr>
</tbody>
</table>
Displacement Conditioning

Advantages

- Identical classrooms
- Tests conducted over two week period
- CO₂ concentration at six foot level monitored
 - Mixed system: 1200 PPM
 - DV System: 400 PPM

Minnesota Elementary School

<table>
<thead>
<tr>
<th>CO₂ Concentration (PPM)</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>800</td>
</tr>
<tr>
<td>600</td>
<td>1000</td>
</tr>
<tr>
<td>800</td>
<td>1200</td>
</tr>
<tr>
<td>1000</td>
<td>1400</td>
</tr>
</tbody>
</table>

Displacement System Air Handling Unit Design

Exhaust Air
2700 CFM @ 84°F

Return Air
8100 CFM @ 83°F

Outside Air
2700 CFM @ 84°F

Supply Air
8100 CFM @ 83°F
Displacement with Induction

Cooling mode operation

- **Primary Airflow** 450 CFM (52 to 55°F)
- **Chilled Water**
- **Room Air** 900 CFM (75 to 78°F)
- **Supply Airflow** 1350 CFM (52 to 68°F)
- **Return Air** 450 CFM (82 to 85°F)
- 100% Exhausted

Displacement with Induction Air Handling Unit Design

Airflow quantities based on 6 classrooms per AHU

- **Exhaust Air** 2700 CFM @ 84°F
- **Return Air** 450 CFM @ 83°F
- **Outside Air** 2700 CFM @ 94°F
- **Primary Air** 2700 CFM @ 51°F

Chilled Ceilings and Beams

Early 2000's

- **Chilled Ceilings**
- **Passive Beams**
- **Active Beams**
- **Multi-service Beams**

- Reduced trade coordination
- Reduced construction cycles
- Production vs. construction

The Future

- CHW & HW piping
- Sprinkler pipes
- Primary air duct
- Control valves & actuators
- Lighting
- Occupancy and/or smoke sensors
- PA system
Multi Service Beams

Indirect Lighting

Passive Multi-Service Beam

Production vs Construction

- Reduce on site fixed costs
- Reduce trade coordination
- Improved quality control
- Reduce design coordination
- Reduce construction schedule
- Deliver building earlier
MSCB Economics

Cost Calculations

- Class A Office Building
- Location: Chicago, Illinois
- 250,000 NSF, 200,000 RSF
- 10 Floors, 25,000 ft² per floor
- Construction Cost: $150 per ft²
- Fixed Site Costs: 12%
- Construction Time: 24 months
- Net Lease Rate: $25 per ft²

Capital Costs

- Building Construction Cost: $37,500,000
- Fixed Site Costs: 12% of $37,500,000 = $4,500,000
- Construction Loan Interest: 5% of $18,750,000 = $938,000
- Accelerated Revenue: $5,000,000

$37,500,000
$4,500,000
$938,000
$5,000,000

$43,000 per week
$16,000 per week
$96,000 per week
$157,000 per week

First Cost Comparison

Conventional VAV System
- HVAC Run out Costs: $2,000,000
- Air Handling Units: $675,000
- Air Cooled Chillers: $240,000

Multi-service Beams
- MSCB’s: $4,180,000
- Air Handling Units: $270,000
- Air Cooled Chillers: $240,000

Less: Lighting Installation Costs ($1 per ft²): $250,000
Less: Suspended Ceiling ($4 per ft²): $1,000,000

$4,690,000
$4,180,000
$1,000,000

$18.76/ft²
$18.76/ft²
$13.76/ft²

$2,270,000
$2,000,000
$1,000,000

$11.07/ft²
$10.70/ft²
$13.06/ft²

$1,000,000
$1,000,000

$3,440,000
$1,000,000

$13.76/ft²
$10.70/ft²

$3,060,000

$765,000

Premium for MSCB over VAV: $765,000

* Annual interest cost
Capital Costs

Actual Scenario (worst case):
- Owner is able to rent 25% of space immediately
- MSCB reduce construction time by 10% (10 weeks)

- Building Construction Cost: $37,500,000
 - $250,000 ft² x $150/ft²
- Fixed Site Costs: 12% of $37,500,000 = $4,500,000
- Construction Loan Interest: 5% of $18,750,000 = $938,000
- Accelerated Revenue: 25% x 200,000 ft² x $25/ft² = $1,250,000

<table>
<thead>
<tr>
<th>Component</th>
<th>Cost</th>
<th>Weekly Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Construction</td>
<td>$37,500,000</td>
<td></td>
</tr>
<tr>
<td>Fixed Site Costs</td>
<td>$4,500,000</td>
<td>$43,000</td>
</tr>
<tr>
<td>Construction Loan Interest</td>
<td>$938,000</td>
<td>$18,000</td>
</tr>
<tr>
<td>Accelerated Revenue</td>
<td>$1,250,000</td>
<td>$24,000</td>
</tr>
</tbody>
</table>

Net cash result = $850,000

Annual interest cost

Payback Analysis

Worst Case Scenario

- Initial Cost Premium: $765,000*
- Early Delivery Worst Case Cash Flow Effect: $850,000

Immediate Payback!

HVAC Energy Savings ($0.50/ft²) = $125,000 annually